23 research outputs found

    A Neural Model of How the Brain Represents and Compares Multi-Digit Numbers: Spatial and Categorical Processes

    Full text link
    Both animals and humans are capable of representing and comparing numerical quantities, but only humans seem to have evolved multi-digit place-value number systems. This article develops a neural model, called the Spatial Number Network, or SpaN model, which predicts how these shared numerical capabilities are computed using a spatial representation of number quantities in the Where cortical processing stream, notably the Inferior Parietal Cortex. Multi-digit numerical representations that obey a place-value principle are proposed to arise through learned interactions between categorical language representations in the What cortical processing stream and the Where spatial representation. It is proposed that learned semantic categories that symbolize separate digits, as well as place markers like "tens," "hundreds," "thousands," etc., are associated through learning with the corresponding spatial locations of the Where representation, leading to a place-value number system as an emergent property of What-Where information fusion. The model quantitatively simulates error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. In the Where cortical process, it is proposed that transient responses to inputs are integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. Neural mechanisms are defined which give rise to an ordered spatial numerical map ordering and Weber law characteristics as emergent properties. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream. The model's What-Where interactions can explain human psychophysical data, such as error rates and reaction times, about multi-digit (base 10) numerical stimuli, and describe how such a competence can develop through learning. The SpaN model and its explanatory range arc compared with other models of numerical representation.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Science Foundation (IRI-97-20333

    A Neural Model of How The Brain Represents and Compares Numbers

    Full text link
    Many psychophysical experiments have shown that the representation of numbers and numerical quantities in humans and animals is related to number magnitude. A neural network model is proposed to quantitatively simulate error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. Transient responses to inputs arc integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream.National Science Foundation (IRI-97-20333); Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institute of Health (1-R29-DC02952-01

    A Neural Model of Multidigit Numerical Representation and Comparison

    Full text link
    The Extended Spatial Number Network (ESpaN) is a neural model that simulates processing of high-level numerical stimuli such as multi-digit numbers. The ESpaN model targets the explanation of human psychophysical data, such as error rates and reaction times, about multi-digit (base 10) numerical stimuli, and describes how such a competence can develop through learning. The model suggests how the brain represents and processes an open-ended set of numbers and their regularities, such as the place-value structure, with finite resources in the brain. The model does that by showing how a multi-digit spatial number map forms through interactions with learned semantic categories that symbolize separate digits, as well as place markers like "tens," "hundreds," "thousands," etc. When number-stimuli are presented to the network, they trigger learning of associations between specific semantic categories and corresponding spatial locations of the spatial number map that together build a multi-digit spatial representation. Training of the network is aimed at portraying the process of development of human numerical competence during the first years of a child's life. The earlier SpaN model proposed a spatial number map, which both human and animal possess in their Where cortical processing stream, that can explain many data about analog numerical representation and comparison. The ESpaN model shows how learned cognitive categories in the What cortical processing stream can extend numerical competence to multi-digit numbers with a place-value structure. The ESpaN model hereby suggests how cortical cognitive and spatial processes can utilize a learned What-and-Where interstream interaction to control the development of multidigit numerical abilities.National Science Foundation (IRI-97-20333); Defense Advanced Research Projects Agency and the Office of Naval Research (NOOOI4-95-I-0409

    The Psychophysiology of Real-Time Financial Risk Processing

    Get PDF
    A longstanding controversy in economics and finance is whether financial markets are governed by rational forces or by emotional responses. We study the importance of emotion in the decisionmaking process of professional securities traders by measuring their physiological characteristics, e.g., skin conductance, blood volume pulse, etc., during live trading sessions while simultaneously capturing real-time prices from which market events can be defined. In a sample of 10 traders, we find significant correlation between electrodermal responses and transient market events, and between changes in cardiovascular variables and market volatility. We also observe differences in these correlations among the 10 traders which may be systematically related to the traders' levels of experience.

    Fear and Greed in Financial Markets: A Clinical Study of Day-Traders

    Get PDF
    We investigate several possible links between psychological factors and trading performance in a sample of 80 anonymous day-traders. Using daily emotional-state surveys over a five-week period as well as personality inventory surveys, we construct measures of personality traits and emotional states for each subject and correlate these measures with daily normalized profits-and-losses records. We find that subjects whose emotional reaction to monetary gains and losses was more intense on both the positive and negative side exhibited significantly worse trading performance. Psychological traits derived from a standardized personality inventory survey do not reveal any specific "trader personality profile", raising the possibility that trading skills may not necessarily be innate, and that different personality types may be able to perform trading functions equally well after proper instruction and practice.

    Estimation of Innovative Clusters Efficiency Based on Information Management and Basic Models of Data Envelopment Analysis

    Get PDF
    Clusters and information management play an increasingly important role in the innovative development of regions and operational management. With the help of such structural entities, socially significant issues are being addressed, infrastructure development of the territories is being carried out, the investment climate is improving and various innovative projects are being implemented, new products, services, technologies are being created, the level and quality of life of the population is being raised. In our research we analyzed 24 innovative clusters created in the Russian Federation with the participation of the Ministry of Economic Development. We used econometric and statistical research methods. We analyzed financial investments made by both private investors and the state in the formation and development of clusters. After that, we compared the output parameters with the input financing and, based on the data envelopment analysis method, calculated the relative efficiency of the innovation clusters. We have identified 3 cluster benchmarks and made recommendations for improving the management system of the other clusters

    Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction, GALACTIC‐HF: baseline characteristics and comparison with contemporary clinical trials

    Get PDF
    Aims: The safety and efficacy of the novel selective cardiac myosin activator, omecamtiv mecarbil, in patients with heart failure with reduced ejection fraction (HFrEF) is tested in the Global Approach to Lowering Adverse Cardiac outcomes Through Improving Contractility in Heart Failure (GALACTIC‐HF) trial. Here we describe the baseline characteristics of participants in GALACTIC‐HF and how these compare with other contemporary trials. Methods and Results: Adults with established HFrEF, New York Heart Association functional class (NYHA) ≄ II, EF ≀35%, elevated natriuretic peptides and either current hospitalization for HF or history of hospitalization/ emergency department visit for HF within a year were randomized to either placebo or omecamtiv mecarbil (pharmacokinetic‐guided dosing: 25, 37.5 or 50 mg bid). 8256 patients [male (79%), non‐white (22%), mean age 65 years] were enrolled with a mean EF 27%, ischemic etiology in 54%, NYHA II 53% and III/IV 47%, and median NT‐proBNP 1971 pg/mL. HF therapies at baseline were among the most effectively employed in contemporary HF trials. GALACTIC‐HF randomized patients representative of recent HF registries and trials with substantial numbers of patients also having characteristics understudied in previous trials including more from North America (n = 1386), enrolled as inpatients (n = 2084), systolic blood pressure < 100 mmHg (n = 1127), estimated glomerular filtration rate < 30 mL/min/1.73 m2 (n = 528), and treated with sacubitril‐valsartan at baseline (n = 1594). Conclusions: GALACTIC‐HF enrolled a well‐treated, high‐risk population from both inpatient and outpatient settings, which will provide a definitive evaluation of the efficacy and safety of this novel therapy, as well as informing its potential future implementation

    A Neural Model of How the Brain Represents and Compares Multi-Digit Numbers: Spatial and Categorical Processes

    No full text
    Both animals and humans represent and compare numerical quantities, but only humans have evolved multi-digit place-value number systems. This article develops a Spatial Number Network, or SpaN, model to explain how these shared numerical capabilities are computed using a spatial representation of number quantities in the Where cortical processing stream, notably the inferior parietal cortex. Multi-digit numerical representations that obey a place-value principle are proposed to arise through learned interactions between categorical language representations in the What cortical processing stream and the Where spatial representation. Learned semantic categories that symbolize separate digits, as well as place markers like `ty,' `hundred,' and `thousand,' are associated through learning with the corresponding spatial locations of the Where representation. Such What-to-Where auditory-to-visual learning generates place-value numbers as an emergent property, and may be compared with other examples of multi-modal cross-modality learning, including synesthesia. The model quantitatively simulates error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. In the Where cortical process, transient responses to inputs are integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence and exhibits Weber law properties. Numerical comparison arises from activity pattern changes across the spatial map that define a `directional comparison wave.' Variants of these model mechanisms have elsewhere been used to explain data about other Where stream phenomena, such as motion perception, spatial attention, and target tracking. The model is compared wi..
    corecore